
[image: image1.jpg]—>

North Shore Technologies




Design Guidelines and Best Practices

Version History:

	Ver. No.
	Date
	Comments
	Prepared By
	Reviewed By
	Approved By

	Ver. 1.0
	14th Dec, 2009
	Initial Draft
	Neha
	Abhishek Rautela
	Mr. Sudhir Saxena

	Ver. 1.1
	22nd June, 2010
	Added detailed description for Design Methodology in Sec 4
	Abhishek Rautela
	Rohitash
	Mr. Sudhir Saxena

	Ver. 2.0
	14th Feb, 2011
	Review & Formatting
	Neha
	Abhishek Rautela
	Mr. Sudhir Saxena

	
	
	
	
	
	


Table of Contents

31.
INTRODUCTION


31.1
Overview


31.2
Purpose


31.3
Scope


31.4
Definitions, Acronyms and Abbreviations


41.5
Reference Document


42.
SYSTEM OVERVIEW


43.
SYSTEM DESIGN


43.1.
Alternative Design


43.2.
External Interfaces Definition


53.3.
Hardware Environment


53.4.
Software Environment


53.5.
Network Environment


53.6.
Design Constraints


54.
SYSTEM CONTEXT


54.1.
Design Objective


64.2.
Design Methodology


64.3.
Design Decomposition Description


64.3.1.
Module Decomposition


94.3.2.
Concurrent Process Decomposition


95.
database DESIGN


95.1.
Data Structures and Operations


105.2.
Data Dictionary


106.
reusable components


107.
Traceability Matrix




1. INTRODUCTION

Design is the blueprints drawn for building the system. The requirements of software are transformed into definitions of software components and their interfaces, to establish the framework of the software. This is done by examining the software requirements and then building a physical model using standard software engineering methods. Every detail should be made clear based on the requirements of the project Give a brief description about the type of design chosen for example Structured Systems Analysis and Design methodology (SSADM), Object Oriented Analysis and Design (OOADM) or Information Modeling or any other methodology.
1.1 Overview

All the mandatory practices in software engineering standard relevant to the design should be described. Define the design, methods and tools used for the high level design. Describe what the document contains and how it is organized.
1.2 Purpose

The major modules in the software shall be identified and High Level Design documents shall be prepared for each of the modules.

The High Level Design document (HLDD) defines the software in terms   
of the major software components and interfaces. The design should 
cover 
all the requirements specified in the software requirements.
1.3 Scope

Based on the functionality of the project

     Identify application areas and group them into application modules

     Make preliminary identification of service modules

     Define module relationships and their interfaces

· Define the scope of each major module and map them to Software Requirement Specification document
·  The interdependencies among the modules are defined

1.4 Definitions, Acronyms and Abbreviations

This subsection should provide the definitions of all terms, acronyms, and abbreviations, or refer to other documents where the definitions can be found.

The project-specific definitions and acronyms are as follows:

Please include standard acronyms used in NST and defined in the QMS (e.g. PL, SSAD, OOAD, etc.)

	Acronym
	Explanation

	PL
	Project Leader

	OOAD
	 Object Oriented Application Design

	SSAD
	Structured Systems Analysis & Design


1.5 Reference Document

       The reference documents are:

    SRS
2. SYSTEM OVERVIEW
3. SYSTEM DESIGN
3.1. Alternative Design

Alternative designs for the application are suggested and documented. These alternative designs are analyzed for feasibility and best suitable is chosen to be implemented. While choosing the best feasible design, DAR (Decision, Analysis and Resolution) plays a vital role. It provides a formal Evaluation process to analyze possible decisions and evaluates identified alternatives against established criteria. For further knowledge about DAR please refer to DAR Process & DAR Guidelines available in our QMS.

DAR Process: 

PR-13-DAR.doc available under “Processes” in QMS.
DAR Guidelines: 
GD-13-DAR.doc available under “Guidelines” in QMS.
3.2. External Interfaces Definition
The logical and physical data structure of files should be defined in the detailed design. The data structures internal to a program or subroutine should also be specified. Data structure definitions should include.
· Description of each element (e.g. name type dimension)

· Relationships between the elements (i.e. the structure)/ Integration Sequence
3.3.  Hardware Environment
Convert logical record structure to a logical design for a data model. The structure for physical records can be converted to physical design for database. Describe what are the access methods to the data structures like array, linked list, b-tree etc.

3.4. Software Environment
Depending on the volume of transactions, the approximate requirements of data            storage must be defined. The requirement should also take into consideration the routine backup. It should also consider the number of years that the data is required to be preserved for day to day reference, statutory requirements and clients' decision.

3.5.  Network Environment
Security requirements may affect the selection of hardware, the operating system, the design of the interfaces among components, and the design of database components. Decisions on access to the capabilities of the system may have to be taken in the design phase.

3.6. Design Constraints

     Specify the design constraints. They could be:

     Performance requirements

     Interface requirements

     Security requirements like hardware, operating system interface design etc.

     Operational requirements like screen layouts, user interface language

     Portability requirements like machine dependent features

     Maintainability requirements

     Resource requirements like single processor system

     Repeated change in functionality.
4. SYSTEM CONTEXT
4.1.  Design Objective
       The objective of the design is to convert the software requirements into application software.
4.2.  Design Methodology
       The interface should use terms and concepts, which are familiar to the expected class of user. The interface should be consistent. It should contain a mechanism (Undo facility), which allows users to recover information; in case they make an error, i.e. the confirmation of some destructive actions (like Delete) should be provided before any information is destroyed. The interface should also offer some form of guidance to the user. The interface should have some built-in “Help” facilities. 
A Detailed description of Design Methodologies is provided in the document attached under: 


[image: image2.emf]Software Design  Methodologies.doc


4.3.  Design Decomposition Description
The software components should be summarized. 
They should be presented as, structure/ integration Sequence charts or object diagrams showing the hierarchy, control flow and data flow between the components.

Use either of the following ways to present the software design:

· Define the system using one or more of the identity, type, purpose, function and subordinate parts of the component description. Suitable methods of presentation are tables, listing component identities with one-line summary of their purpose.

· Define the functionality of the components and their interfaces. It should define the system using one or more of the identity, functions and interface parts of the component description. Suitable methods of presentation are interface files and parameter tables.

· Define relationship among the components. It should define the system using one or more of the identity, type purpose, and dependency and resource parts of the component description. Suitable methods of presentation are structure charts and object diagrams.

4.3.1. Module Decomposition
The description of the components should be laid out hierarchically. There should be subsections dealing with the type, purpose, functions, subordinate dependencies, interfaces, resource references, processing and data for each component. Each component should have a unique identifier for effective configuration management. The component should be named according to the rules of the programming language or operating system to be used. The identifier should reflect the purpose and the function of the component.
1.3.1.1. Module 1 Description

4.3.1.1.1. Type


Component type should be defined by stating its logical and physical characteristics. The logical characteristics should be defined by stating the package, library or class that the component belongs to. The physical characteristics should be defined by stating the type of component, using the implementation terminology e.g. task, subordinate, subprogram, package, and file.
4.3.1.1.2. Purpose



The purpose of a component should be defined by tracing it to the software requirements that it implements. Backward traceability depends on the description of each component explicitly referencing the requirements that justifies its existence.
4.3.1.1.3. Function


The function of a component should be defined, i.e. describe what the component does. The function description depends upon component type. It could be the description of the process or the information that is stored/transmitted.
4.3.1.1.4. Subordinates


The subordinates of a component should be defined by listing the immediate children, e.g. the subordinates of a module are the modules that are “called" by it.
4.3.1.1.5. Dependencies


These are defined by listing the constraints placed upon its use by other components. Examples are ‘what components have to be executed after this one?’ or ‘what operation should have taken place before calling this component?’
4.3.1.1.5.1. Inter-module Dependencies


The definition of this dependency would be “the operations that have to take place before this component is called".
4.3.1.1.5.2. Inter-process Dependencies


The definition of this dependency would be “the operations that are affected by this operation”.
4.3.1.1.5.3. Data Dependencies


The definition of this dependency would be "the components that are to be executed after this one”.
4.3.1.1.6. Interfaces



For each executable component both data flow and control flow from a component should be defined in terms of how the execution of the component should be started (Subroutine call) and how it is to be terminated (Return). The control flow during execution (interrupt) should also be defined.

The data flow, the input to and the output from each component should be detailed.
4.3.1.1.6.1. Module Interface

        The definition of this is the answer to the question “What operations should have taken place before this component is called?"
4.3.1.1.6.2. Process Interface

       The definition of this is the answer to the question “What operations are affected by this operation?"
4.3.1.1.7. Resources


The accuracy of an operation is measured by the difference between what the intention of the operation is and what happens when it is executed.
4.3.1.1.8. References



Explicit references should be inserted where a component description uses or refers to material from another document.
4.3.1.1.9. Processing


The processing for a component must be defined by summarizing the Control and data flow within it.  It is difficult to separate the description of a function from description of processing.  Techniques of process specification more oriented towards software design are program design language and flow charts.
4.3.1.1.10. Data

The data internal to a component should be defined. The amount of detail required depends very much on the type of component. The logical and physical data structure of files should be defined in detail. Data structure definitions should include the:

     Description of each element (name, type, dimension)

     Relationships between the elements

     Initial values of each element
4.3.2.  Concurrent Process Decomposition

       If two subsystems must act as events asynchronously at the same time they are viewed as concurrent processing (Parallel processing). When such a situation arises describe each process separately

Allocate each subsystem to an independent processor. Allocate the subsystems to the same processor and provide concurrency support through operating system features. To decide which processor allocation option is appropriate, consider performance requirements, costs and overhead imposed by inter-processor communication.
4.3.2.1. Process 1 Description
· Define concurrent process for each subsystem.
· Define characteristics of the task.
· Define coordinator task and associated objects.
· Integrate coordinator and other tasks.
4.3.2.2. Process 2 Description
· Define concurrent process for each subsystem.

· Define characteristics of the task.

· Define coordinator task and associated objects.

· Integrate coordinator and other tasks.
5. database DESIGN
5.1. Data Structures and Operations


    Data structure definitions should include: Characteristics of each part (name, type, and dimension), Relationships between parts, Range of possible values of each part, Initial values of each part. The name of the parts of a data structure should be meaningful and unambiguous. The data type of each part of the data structure must be stated. Arrays should be homogeneous, with all the cells storing similar information. It must be described as to how data structures are initialized. Inputs that may change should be accessible to the user or operator.

5.2. Data Dictionary

    The brief about the data dictionary must be specified, The detail about all data definitions, procedures, data types, preset values, restrictions or limitations etc., which are to be stored must be specified. This would help in maintaining the consistency. The size of data dictionary must be specified.

6.   reusable components
Reuse of software can arise at all stages of design. Decisions may have been taken to reuse software for all or some major components, such as:   

· Application Generators

· Database Management systems

· Human-computer interaction utilities

· Mathematical utilities

· Graphical utilities

· Build shells around the library modules to standardize interfaces 



( e.g. error handling)

· Define conventions for the library modules to use.       
7. Traceability Matrix

This should describe a table that would summarize as to how each software requirement has been met in the detailed level design document. The tabular format 
should have one-to-one and one-to-many relationships. A template for Traceability Matrix is available in QMS under the templates section for reference and implementation. 
Requirements Traceability Matrix:
 TP-02-RTM.xls is available under “Templates” in QMS
Design Guidelines ver 2.0~NST 

Page 1/11

_1344704801.doc
Major Software Design Methodologies


A methodology can be simply defined as a set of procedure that one follows from the beginning to the completion of the software development process. The nature of the methodology is dependent on a number of factors, including the software development environment, the organization's practices, the nature or type of the software being developed, the requirements of the users, the qualification and training of the software development team, the available hardware and software resources, the availability o f existing design modules, and even the budget and the time schedule. Since the 1970s, there have been proliferations of software design methodologies. Different methodologies have been developed to resolve different types of problems. In describing these problems, it is often possible or necessary to group problems with similar characteristics together. This is called the problem domain. Many of these methodologies have evolved from the specific milieu where the software was developed. By this it is meant that specific methodologies are often developed (to be applied) to resolve certain "classes" of problems, also called domain of application, for which it is well-suited. Even though the design mechanics are different in each methodology (Pressman, 1992, p.319): 


"Yet, each of these methods have a number of common characteristics : (1) a mechanism for the translation of information domain representation into design representation, (2) a notation for representing functional components and their interfaces, (3) he rustics for refinement and partitioning, and (4) guidelines for quality assessment."


There are two broad categories of design methodologies: the systematic and the formal types. As the name imply, the formal type makes extensive use of mathematical notations for the object transformations and for checking consistencies. The systematic type are less mathematical and is consist of the procedural component, which prescribes what action or task to perform and the representation component, which prescribes how the software structure should be represented. Generally, techniques from the systematic design methodologies can be integrated and can utilize representation schemes from other techniques when and as appropriate. Due to the fact that methodologies have been developed from different milieu specifically to address certain problems o r groups of problems, there is no common baseline on which to evaluate or compare the methodologies against each other. However, the underlying principles of the methodologies can be analyzed and examined for a better understanding of the basis for each methodology. With a better understanding of the methodology, its domain of application can be more effectively applied or more accurately defined. Generally, alternative design allows for important trade-off analysis before coding the software. Thus, familiarity with several methodologies makes creating competitive designs more logical and systematic with less reliance on inspiration. It is not the intention of this section to explain the detailed mechanics of each of the methodologies but to discuss specific principles of each methodology. 


Top-Down/ Bottom-Up Design


Top-down design directs designers to start with a top-level description of a system and then refine this view step by step. With each refinement, the system is decomposed into lower-level and smaller modules. Top-down decomposition requires identifying the major higher-level system requirements and functions, and then breaking them down in successive steps until function-specific modules can be designed. Thus, top-down design is a level-oriented design approach. 


Top-down strategies have been the topic of some past studies (Miller & Lindamood, 1973; Budgen, 1989; Yourdon, 1979). Top-down design reduces the scope and size of each module, and focuses more on specific issues. It is by nature an iterative process w here each refinement will decompose a module into more specific and detailed sub-modules until it reaches a point where the "atomic" level is achieved. Through this iterative process, the decisions make at the upper-levels will have a significant effect on subsequent decomposition at the lower-levels. As a result, there is a possibility that decisions made at the upper level will result in an untenable or awkward or inefficient decomposition at the lower-levels. To overcome this, there has to be a significant amount of backtracking where the higher levels decisions have to be re-evaluated and then re-structured accordingly. In order to minimize backtracking, an often designer starts the decomposition at about the mid-level rather than at the top-level, or uses a top-down design but determines the lowest-level modules first. This is in contrast to the bottom-up approach where the lowest modules or the basic features are determined first then additional modules or features are added. 


The bottom-up approach has also been studied (Freeman & Wasserman, 1983; Von Mayrhauser, 1990; Jalote, 1991). In the bottom-up approach, the designers must identify a basic set of modules and their interrelationships that can be used as the foundation for the problem solution. Higher-level concepts are then formulated based on these primitives. Bottom-up design is also an iterative process, and can also result in significant backtracking if the primitives are not properly constructed. The benefit of the bottom-up design is that it permits the assessment of the sub-modules during the system development process. Whereas in the top-down design, performance evaluation can be done only when the complete system is integrated. However, top-down design does allow for early evaluation of functional capabilities at the user level by using dummy routines for lower-level modules. Thus, at the beginning of the project, the major interfaces can be tested, verified or exercised. The benefit in using the top-d own design is that the main focus is on the customers' requirement and the overall nature of the problem to be solved. Also debugging is easier than some other methods. 


In reality, the pure top-down or bottom-up approach is seldom used. The top-down approach is best-suited when the problem and its environment are well-defined, for example, in designing a compiler. When the problem is ill-defined, the approach should mainly be bottom-up or mixed. The top-down approach have resulted in the evolution of a very popular design methodology called structured design which will be discussed later in this section. 


Stepwise Refinement


The iterative process where each system is decomposed and refined step by step is called stepwise refinement. It is a level-oriented design approach. Stepwise refinement was first proposed by Wirth(1974). It defines a sequence of refinement steps. In each step, the system or module is decomposed into subsystems or sub modules. Each refinement of the module should be accompanied by a refinement of the structure and relationship between the modules. In addition, each successive step in the refinement process should be a faithful extension of the previous step. The degree of modularity derived from the refinement will determine the extensibility of the module. As the system or module is refined step by step, a notation should be used to capture the process. The nature of this notation should be such that it can capture the structure of the system and its data. I t should also have a close resemblance to the programming language to be used for coding. Each refinement is based on a number of design decisions based on a certain set of design criteria. With each refinement step, design decisions are decomposed to a lower-level until it reaches an elementary level. 


Stepwise refinement begins with specifications obtained from requirement analysis. The solution to the problem is first broken down into a few major modules or processes that will demonstrably solve the problem. Then through successive refinement, each module is decomposed until there is a sufficient detail so that implementation in a programming language is straight forward. In this way, a problem is segmented into smaller, manageable units and the amount of details that have to be focused on any point in time is minimized. This allows the designer to channel his resources at a specific issue at the proper time. As stepwise refinement begins at the top-level, success is highly dependent on the designer's conceptual understanding of the complete problem and the desired solution. 


Parnas (1972) have proposed some guidelines on the decomposition of systems into modules, also called modularity. To achieve good modularity, each module should perform only a specific, distinct task. Its inputs and outputs are well-defined. Thus, errors and deficiencies can be easily traced to specific or particular modules thereby minimizing debugging. Also, in this way, maintenance is modular in nature. Modularity allows one module to be coded without any knowledge of the code in the other modul es. It also allows modules to be re-assembled and replaced without re-assembly of the whole system. Software has been defined as a family of programs according to Parnas (1979). There are parent programs and there are children programs, there are also different generations of programs. Some of the ways members of a program family can differ are: the hardware configuration on which they run might be different; the input and the output data are different even though the function performed is the same; the algorithm and the data structures are different due to the difference in available resources and in the size of input sets or the relative frequency of certain events; some users may need only a subset of the features that other users use. There are basically four classes of obstacles that interferes in the extension or contraction of a program : excessive information distribution where many programs are written allowing for the absence or presence of features; chain of data transforming components where data are transformed sequentially from component to component; components that perform more than one function; loops in the calling of other components where the software works only when all other components are working. There are two basic measures for assessing the modularity of a system - cohesion and coupling. Cohesion is concerned with the interrelationships among the elements within a module whereas coupling is concerned with the interdependencies between different modules. More detailed discussion can be found in the section on Structured Design. 


The domain of application of stepwise refinement is rather wide; it includes any non-trivial problem system that can be logically and/or functionally decomposed. And because it is not bounded by any specific representation or design techniques, it is oft en used in conjunction with other design methodologies. 


Structured Design


Structured Design (SD) was first developed by Stevens, Myers and Constantine (1974). It is a data flow-oriented design approach. It has become probably the most popular methodology of software design. It is easy to use and there is an evaluation criterion that can serve as guide in the software design. The main notational scheme that SD uses is the data flow diagram (DFD). SD is conceptually dependent on three rationales (Peters, 1981): composition and refinement of the design; separation of issues into abstraction and implementation; evaluation of the results. From the compositional rationale, SD views systems from two perspectives: as the flow of data and the transformations that data flow undergo through a system. Since data flows and transformations are the only characteristics depicted in the DFDs, the element of time is not present. Thus, the designer can just focus on the transformations of the data flows through a system. Through the perception of the system as data flows and transforms, there is minimal variation in the construction of the system model, as a result the shape or structure of the system is maintained. This is in contrast to the top-down design where decisions made at the top-level will affect decomposition at lower-level s. In addition, the interdependence of these data flows and transformations will result in the identification and organization of modules required in the building of the system model.


From the abstract or implementation rationale, the SD process suggests a differentiation between the logical design (abstract) and the physical design (implementation). A common problem that designers encounter is the chicken-and egg dilemma of trying t o understand the problem and to define the solution at the same time. Through the analysis of the data flows and the transformations, the designer can derive a logical solution devoid of implementation considerations. This early logical solution will not have details; will not be precise; and cannot be implemented immediately. Once this logical solution is able to satisfy the requirements or meet the objectives, the designer will then make the necessary changes so that the solution can be implemented. In other words, the logical design (abstract) needs to be converted to the physical design (implementation). 


From the design evaluation rationale, SD offers a set of prescriptive criteria for evaluating software design. These criteria are independent of the methodology and can be applied to other design methodologies. Two categories of criteria are involved: the connections to other modules (coupling) and the intra-module unity (cohesion). The system level criterion, coupling provides a way of evaluating the inter-dependencies between modules. As modules are the building blocks of a software system, their relationships will determine how well the system can be maintained or changed. If the modules are highly interdependent on one another, it will be more difficult to make changes to one module without affecting the others. Conversely, if the modules are highly independent from one another, it will be easy to maintain and changes can be made on one module without affecting the others. The single module criterion cohesion provides a way of evaluating the functional connections between its processing elements. The most desirable cohesion is one where a module performs a single task with individual data elements. The least desirable cohesion, on the other hand, is one where a module performs a few different tasks with unrelated data structures.


A good system design will have strong cohesion and weak coupling. Two classification spectrums can be derived based on the coupling and cohesion characteristics. From Myers (1975) and, Yourdon and Constantine (1978), a summary of SD categories from good to bad, is given below:

Coupling Categories


1. Data: all communications between modules is through data element arguments. 


2. Stamp: communication includes data structure arguments (some fields are not needed). 


3. Control: an argument from a module can control the flow of the other, for example, a flag. 


4. External: they reference an externally declared data element. 


5. Common: they reference an externally declared data structure. 


6. Content: one references the contents of the other. 


Cohesion Categories


1. Functional: they perform a single specific function. 


2. Clustered: it is a group of functions sharing a data structure usually to hide its representation from the rest of the system; only one function is executed at each call, for example, the symbol table with insert and look-up functions. 


3. Sequential: it consists of several functions that pass data along, for example, update and write a record. 


4. Communicational: it consists of several logical functions operating on the same data, for example, print a file. 


5. Procedural: its elements are grouped in an algorithm, for example, body of a loop. 


6. Temporal: its functions related in time, for example, initialization. 


7. Logical: it can perform a general function where a parameter value determines the specific function, for example, general-error-routine called with an error code. 


8. Coincidental: no relationship between module elements that are grouped for packaging purposes. 


The intention of SD is to measure the program modules in terms of its cohesion and coupling. Its objective is for each module to perform a single specific function and that all its argument are individual data elements. Using SD criteria, some design "quality" might be sacrificed as the result of the design trade-off analyses. 


The basic approach of SD is to start off with a system specification that identifies the inputs, the desired outputs and a description of the functional aspects of the systems that transforms the data. This specification is used for the graphic representation of the system, the data flow diagram. Next the overall interrelationships of the transformations and data flows are identified. This leads to the definition and portrayal of modules and their relationship to one another and other system elements in form of structure chart. 


Often Structured Analysis (DeMarco, 1978) is combined together with Structured Design (Yourdon & Constantine, 1978) to form an integrated system structured design technique. The technique begins with structured analysis where a model of the system is built using data flow diagrams (DFD). The DFDs are derived from the existing actual processes in the system which is iteratively refined and decomposed to a final logical solution. The DFDs should be checked for consistency and data conservation through each iteration. A data dictionary should then be built in a logical form specifying the content of the data, the data flows and all the data forms in the DFDs. The data dictionary must be well correlated to the DFDs including the handling of aliases, definition of data structures and the implementation of the data dictionary. Next, the processes or operations in the DFDs have to be defined by analyzing the process logic and then depicting them in pseudo code. Finally, a logical, hierarchical design needs to be derived from the flat DFDs. This stage begins with evaluating the control mechanism, the changeability of the modules, modular cohesion and coupling, transform analysis, design refinement, error and exception handling, and transaction analysis. Design begins with an evaluation of the higher level DFDs, the type of information flow is identified and the flow boundaries that separate the transform or transaction centers are defined. The transforms are then mapped to the program structure as modules. Pressman (1992, p. 371) has proposed a data flow-oriented design process model. 


External information flow into a system must be transformed into internal information for processing. Information enters a software system along paths called incoming flows which transforms the external data into internal data. Incoming flow passes through the core of the software system called transform center and along paths that flow out of the software system called outgoing flow. When the overall flow of data is sequential and follows a single or a few "straight-line" paths, it is called transform flow. Transform analysis is a set of design steps that map DFDs with transform characteristics into a design structure chart. Transform analysis is a strategy. Page-Jones (1980) has defined the procedure for transform analysis as: draw a DFD for the problem, determine the central transform of the DFD, derive a first-cut structure chart from the DFD, refine the structure chart using Structured Design criteria and verify that the final structure meets the requirements of the original DFD design. 


Even though the basic system model is mainly transform flow, information flow is often characterized by a single data item called a transaction, which triggers other data flow along one of many paths. When a DFD exhibits such a characteristic, it is termed a transaction flow. Transaction flow is derived from an external data flow along an incoming path called a reception path that changes the data into a transaction. The transaction is evaluated and initiated on one of the action paths based its value. The center of the information flow where many action paths branches out is called the transaction center. It is possible for large complex systems to have both transformed and transaction flows. The procedure for transaction analysis is basically the same as for transform analysis except for the mapping of the DFD to the program structure. More details of the mechanics of transformation and transaction analysis with examples can be found in articles by Page-Jones (1980) and Pressman (1992) amongst others. 


SD is popular because it uses notation (data flow and transformation) that a designer can identify with and is easy to use. Also, SD provides the designer with a means of evaluating the software design. However, the conversion of the design and module specifications into programming language is not addressed. In addition, even though guidelines for decomposition are provided, the operations within the modules are not explicitly dealt with. Also, the derivation of the data flows and transformations w ill vary between designers, as a result, for a single system, different designers will have different data flows and transformations. Precise guidelines on the derivation of data flows and transformations from the system specification are not available. Although SD has its limitations, when it is used with other tools such as the data dictionary, structure charts, decision tree and structured English, it provides the primary building block on which system design can be based. This technique is ideally suited for software that requires execution in a sequential manner. It is widely used in data processing systems largely due the fact that emphasis is on information flow. DFDs are easy to use and easy for end-users to understand, who can then provide input in the design process. This technique is well-established and documented. In addition, it is supported by graphical CASE tools. 


Structured Analysis and Design Technique


Structured Analysis and Design Technique (SADT) is a data flow-oriented design approach. It originated and is promoted by SofTech Corporation (1976). SADT was derived originally form studies in computer-aided manufacturing by S.Hori (1972). Its final form was developed by D.T.Ross and colleagues (Ross & Schoman, 1977) at SofTech Corporation. 


SADT utilizes a technical graphics "language" and a set of procedures and management guidelines to implement the language. This language is called the language of Structured Analysis (Ross, 1977) (or SA language). The procedures for the SA language are similar to the guidelines used for engineering blueprint systems. Each SA diagram is drawn on a single page and contains three to six nodes with interconnecting arcs. There are two types of SA diagrams - the activity diagram (called actigram) and the data diagram (called datagram). Details of this representation scheme can be found in my other notes.


SADT was developed based on the concepts : that precise models describing a complex problem will provide the best means to an effective solution; that analysis should be top-down, hierarchical and structured as modules; that the models must be able to show the objects (for example, data, and modules) and the processes of the system as well as their relationships; that the model can be graphically represent the interfaces between modules and its hierarchical structure; that the functions of the system (the "what") clearly distinguishable from the means (the "how") of the system; that this method must provide a coherent discipline between designers; and that review and documentation of all decisions and feedback in the design process is important (Dickover, McGowan & Ross, 1978). Detailed mechanics of SADT can be found in the cited references from this section.


The SADT methodology provides a precise and concise representation scheme and a set of techniques to graphically define complex system requirements. There is top-down decomposition with clear decomposition for input, output, control and mechanism for each node. It is beneficial to segregate the data and the activities into two diagrams so that they are not cluttered. The notation also distinguishes between control data and mere input data. Also its management technique of developing, reviewing and coordinating an SADT model is rather efficient. However, in systems where many diagrams are involved (and arranged in a hierarchical order), the additional control information on the diagrams can make it difficult to understand and follow. Also, as each designer independently develops his own diagrams, it would be difficult at the review to integrate the designer's portion and the rest of the system. Thus, due to its complexity in the notational scheme, it is not often used but its utility in real-time system is apparent.


Jackson Systems Development 


The Jackson System Development (JSD) (Cameron, 1989) method is a data structure-oriented design approach. It is an extension of the Jackson Structured Programming (JSP) method. JSP, developed by Michael Jackson (1975), is a systematic process of mapping the structure of a problem to a program structure. The process begins by modeling the specifications of the input and output data structures using tree structured diagrams. Graphical notations are used to specify data sequences, repetition, hierarchy and alternatives. Then a structural model is derived from the correspondence of nodes in the input and output trees. Finally, this structural model for the program is refined to a detailed model that includes all the operations or processes needed to me et the requirements. All this is done by listing all the operations needed to process the data. The operations are then mapped into the program structure. The control flow for selection and iteration are then derived from the entire program structure with the operations, and represented in schematic pseudo code.


Difficulties associated with JSP are structure clashes and the need for look-ahead. Structure clashes arise when the correspondence of nodes in the input and output data structures cannot be determined. Structure clashes can be resolved by program inversion where a producer and a consumer routine is created. The consumer routine will call on the producer routine will call on the producer routine to deliver the next data item, which will appears as if the data are being processed from a sequential file of values. The need for look-ahead arises when processing on a data item depends on a yet-to-be processed data. The look-ahead problems can be resolved by backtracking. Backtracking involves saving the state of the program before each processing sequence and if it is found that a processing sequence is incorrect; the program state is reset back to the state prior to this processing sequence. JSP is highly efficient in software design applications such as inventory, finance, banking or insurance which basically utilizes sequential programs. And with its emphasis on data structures, JSP can also be used for various data processing systems. 


The JSD methodology models the world in terms of entity-action-attribute, which undergoes a step by step process to connect it to the "real" world. The basis of JSD (Sutcliffe, 1988) is to derive a model based on a set of entities and their actions, and of the attributes associated with these actions. Subsequently, the interactions between entities as well a entities and the external world with the real-time issues related to them are added to the model. The JSD includes the following steps:

· Entity action step: where entities (an object that produces or uses information) and actions (happenings in the real world that affect entities) are identified. 


· Entity structure step: where actions are ordered by time and represented by Jackson diagrams. 


· Initial model step: where a model is derived from the entities and actions, and connections between the model and the real world is defined. 


· Function step: where functions of the defined actions are specified. 


· System timing step: where process scheduling characteristics are evaluated and specified. 


· Implementation step: where the hardware and software are specified as design. 


Details of the mechanics of JSD and some examples can be found in the article by Cameron (1986) and the other references cited in this section.


The JSD methodology is based on the rules for building models. It uses an approach quite similar to the object-oriented approach including the use of abstraction. It has a well-defined framework for building the model. However, the methodology breaks down for data structures and the relationships that do not possess chronological actions. It is not suitable for small problems due to its intense analysis and the long learning curve. The JSD method is best-suited for large (can be concurrent) systems where events need to be scheduled according to time. Data processing and process control systems are the main domain of applications. 


Structured Systems Development


Structured Systems Development (SSD), also called Data Structured Systems Development (DSSD), is based on the design strategy originally developed by Warnier (1976). SSD is based on the data structure-oriented design approach. The central theme of SSD is that the structure of the data will determine the program structure. Thus, precise and accurate identification of the data structures will lead to a well-structured program. The design notations used in SSD are the Warnier-Orr diagrams. (See Appendix 1). This method starts with analyzing the problem and expressing it in terms of the Warnier-Orr diagram. Orr (1977) has defined SSD as follows : 


"Structured systems design is a method of logical analysis, design, and development; it can be used on any kind of system with any kind of language, computerized or not ........ Something is structured if and only if (1) it is hierarchically organized and (2) the pieces of each function are related to one another either by sequence, alternation, or repetition - the basic forms of logic."


From the system analysis, the focus is on the output and the processes that transform the input data structures to the output data structures. Pressman (1992) calls them the logical output structure (LOS) and the logical process structures (LPS). The analysis should also provide requirements information such as the application context, which is how data flow between producers to consumers; the application functions which are the processes the data undergo; and the application results which is the desired output after passing through the system. To derive the LOC, the designer must : analyze the requirements information and identify all data items that are in its basic state; determine how frequent each atom (that is, basic data item) occurred; identify data items that are not in its basic state or are composite data items (called universals); and use Warnier-Orr diagrams to represent the system. To transform LOC to a procedural program, the LPS have to be defined. To define LPS form the LOC notation : all atoms are eliminated from the Warnier-Orr diagram; BEGIN and END are added to the universals to denote the starting and ending points of the repetition; define the initialization instructions for BEGIN and the termination instructions for END; define all data operations performed; specify output instructions; and specify input instructions. 


Detailed mechanics of SSD with examples can be found in the references cited in this section. The SSD methodology is well suited for data processing systems. 


Object Oriented Design


Object Oriented Design (OOD) provides a mechanism that encompasses three important concepts in software design: modularity, abstraction, and encapsulation (also called information-hiding). OOD concepts were first introduced by Abbot (1983) and were subsequently enhanced by Booch (1986, 1990). OOD is basically an approach that models the problem in terms of its objects and the operations performed on them. OOD decomposes the system into modules where each "... module in the system denotes an object or class of objects from the problem space" (Booch, 1986, p213). Objects represent concrete entities which are instances of one or more classes. Objects encapsulate data attributes, which can be data structures or just attributes, and operations, which are procedures. Operations contain methods, which are program code, which operates the attributes. A class is a set of objects that share a set of common structure and behavior. A class represents a type and an object is an instance of a class. A class contains three items : class name, list of attributes, and list of operations. Thus, a class represents a set of objects with similar attributes, common behavior and common relationships to other objects. The derivation of subclasses from a class is called inheritance. A subclass may have a few super classes, thus multiple inheritances. The ability of any objects to respond to the same message and of each object to implement it appropriately is called polymorphism. Relationships describe the dependencies between classes and objects.


Object Oriented Analysis (OOA) (Coad & Yourdon, 1991), a requirement analysis technique, starts at the top-level by identifying the objects and classes, their relationships to other classes, their major attributes and, their inheritance relationships then derive a class hierarchy from them. On the other hand, OOD extracts the objects, which are available from each class and their relationship to each other, to derive a detailed design representation. The basic building blocks to accomplish OOD are to establish a mechanism for: depicting the data structure; specifying the operation; and invoking the operation. Data abstraction is created: by identifying classes and objects; modules are defined and structure for software established by compiling operations to the data; and interfaces are described by developing a mechanism for using the objects. 


Thus, the identification of objects is a primary objective of OOA and acts as a springboard for OOD. Once the objects have been identified, the set of operations that act on the objects are examined. There are basically three types of operations: those that manipulate data, those that perform computation and those that monitor an object. Defining the object and its operations alone is not enough to derive the program structure. The interfaces that exist between the overall structure and objects have to be identified and defined. All of these should then be integrated into a program-like construct that closely resembles the programming language. Details of the mechanics of OOA and OOD with some examples can be found in the references cited in this section.


OOD creates a model of the real world and maps it to the software structure. Even though OOD provides the mechanism to partition the data and its operations, its representations are prone to have programming language dependency. There is an absence of guidelines to model the initial objects or classes, thus it will depend upon analysis techniques from other methodologies. The OOD methodology is a recent development; as such it is still dynamic and evolving. A few months or years from today, the methodology might have evolved into a different methodology than what we have today. Also as OOD is new, its domain of application is rather general. A survey of recent research in OOD can be found in the article by Wirfs-Brock and Johnson (1990). 



